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Up to 50 million people worldwide are afflicted with the devastating blinding disease age-

related macular degeneration (AMD)1–3. The vast majority of patients have the currently 

untreatable “dry” or atrophic form of AMD, characterized by NLRP3 inflammasome-driven 

degeneration of the retinal pigment epithelium (RPE) supportive cell layer4,5. Blockade of 

the NLRP3 inflammasome is a next-generation therapeutic target in dry AMD; however, it 

was recently reported that inflammasome-mediated production of IL18 potentially 

safeguards the retina against the other, often more visually devastating form of AMD, for 

which dry AMD patients are at greatly increased risk of developing, known as choroidal 

neovascularization (CNV)6. Therefore, it is essential, prior to initiating inflammasome-

targeting clinical trials, to directly and rigorously assess whether modulating IL18 or the 

NLRP3 inflammasome affects CNV and RPE cell health.

Classically, neovascular AMD is characterized by invasion and leakage of immature blood 

vessels from the underlying choroid into the neural retina2,3 and causes rapid and severe 

vision loss if not treated promptly. There is a great need to improve available treatment for 

CNV: Even with the current standard-of-care – blockade of vascular endothelial growth 

factor-A (VEGFA) –substantial vision loss still occurs in one-third of CNV patients after 

seven years of therapy, at which time nearly all patients exhibit central retinal atrophy7, a 

finding consistent with the toxicity observed following Vegfa blockade in multiple cell types 

in the rodent retina8,9. As such, there is a pressing need to develop improved, alternative 

anti-angiogenic strategies to treat neovascular AMD.

The NLRP3 inflammasome, an innate immune complex, and the cytokine IL18, which is 

processed into a mature form by inflammasome activation, have emerged as targets in 

atrophic AMD: NLRP3 activation or IL18 upregulation have been identified in the RPE of 

human atrophic AMD donor eyes5,10,11, and inflammasome activation or IL18 exposure 

induce cell death of the RPE5,11. These studies suggest that inflammasome inhibition could 

be therapeutic for atrophic AMD5,12. However, it has been recently reported that blocking 

either NLRP3 or IL18 inhibits a mouse model of CNV6. To resolve the function of this 

innate immune pathway in CNV and to determine the viability of modulating this pathway 

in clinical trials of various forms of AMD, we addressed the putative role of IL18 and 

NLRP3 in CNV using the standard laser injury-induced model in mice13, which is widely 

used and has been predictive of therapeutic success in humans.

Data from experiments performed independently at five different laboratories (JA, DH, BA, 

YO, HT) showed that intravitreous administration of recombinant mouse IL18 (MBL 

International), at doses ranging from 30 pg to 1 μg, did not affect laser CNV in wild-type 

mice when compared to PBS injection (Fig. 1a–f). Importantly, experiments from two 

laboratories (JA and HT) found that doses of IL18 comparable to those reported earlier12 did 

not affect CNV. Meanwhile, all five groups also tested higher levels of IL18 than those 

tested previously. Yet, despite each of the five laboratories using varied laser injury 

parameters to explore whether such technical differences could elicit differential sensitivity 

to IL18 levels, none of the research groups observed any modulatory effect of IL18 on CNV. 

We also found that IL18 (100 ng) did not modulate CNV volume at either 1 or 2 weeks after 

laser injury (Supplementary Fig. 1a). To rule out the possibility that the small fraction of 
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additional substances in the recombinant IL18 preparation might be pro-angiogenic, thereby 

counteracting the purported anti-angiogenic activity of IL18 (which comprises 98.81% of 

the preparation), we tested whether the concentration of sucrose (1%) in the recombinant 

IL18 diluent affected CNV; we found that sucrose (1%) did not change CNV compared to 

PBS (Supplementary Fig. 1b). To further rule out that other substances in the recombinant 

IL18 preparation were not counteracting the effects of IL-18, we tested the recombinant 

IL18 preparation in Il18r1−/− mice, which would enable us to unmask the potential pro-

angiogenic activity of the non-IL18 components because IL18 would be biologically silent 

in these mice lacking its cognate receptor. We found that the recombinant IL18 preparation 

did not increase CNV in Il18r1−/− mice (Supplementary Fig. 1c), which also indicates that 

the MBL IL18 diluent and excipients are not pro-angiogenic. We also tested another source 

of recombinant mouse IL18 (US Biological) and found it too did not modulate CNV in 

doses ranging from 1 ng to 1 ranging from 30 pg tg (Supplementary Fig. 1d). Moreover, in 

vivo transfection of RPE cells by subretinal injection of expression plasmids encoding 

inactive precursor (pro-IL-18) or active (mature) mouse IL18 did not reduce CNV in wild-

type mice (Supplementary Fig. 2a); expression from plasmids was confirmed using western 

blotting or immunofluorescence (Supplementary Fig. 2b-c). These data demonstrate that 

IL18 is not anti-angiogenic in the mouse model of laser-induced CNV.

Recombinant IL18 (Supplementary Fig. 3a), at a dose within the range that did not affect 

CNV lesion size (Fig. 1), induced RPE degeneration in wild-type mice, as did an expression 

plasmid for the mature, active form of IL18. Overexpression of pro-IL18, the inactive IL18 

precursor did not induce RPE degeneration in wild-type mice, nor did overexpression of 

mature IL18 in mice lacking its cognate receptor (Il18r1−/−) (Supplementary Fig. 3b). The 

health of RPE cells, which subserve the neural retina, is essential for vision, and RPE loss is 

a hallmark of atrophic AMD. Consistent with the observed RPE and, secondarily, 

photoreceptor degeneration, the electrical response of the eye to light, as measured by full-

field electroretinography, of wild-type mice treated with recombinant IL18 was diminished, 

showing decreased a- and b-wave amplitudes on ERG compared to PBS injection control 

(Supplementary Fig. 3c). Finally, we found expression of the IL18 receptor (IL18R1) in the 

RPE of normal human eyes by immunostaining (Supplementary Fig. 3d); it seems 

reasonable to speculate that increasing IL18 levels in the retina could lead to RPE 

degeneration and consequently, severe vision loss, in humans. Moreover, the plausibility of 

this idea is congruent with our findings of increased IL18 expression in human eyes with 

atrophic AMD5. Altogether, these data do not support the notion that IL18 is anti-angiogenic 

for CNV, and, importantly, demonstrate that intraocular IL18 administration (40 ng to 100 

ng in mice) is toxic to the retina. Furthermore, Doyle et al.12 showed that an even lower dose 

of IL18 (3 ng) resulted in molecular and visual pathology at just 24 hours after intravitreous 

administration. Therefore, IL18 therapy could pose a threat to vision and carries the risk of 

harming the sight of patients.

Although delivery of exogenous IL18 did not reduce CNV, we also tested whether blockade 

of endogenous IL18 would affect CNV. It was previously reported that intravitreous 

administration of an anti-IL18 antibody increased CNV lesion size, purportedly via 

neutralization of endogenous IL18 (ref. 6). However, that experiment compared eyes treated 
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with this antibody to eyes treated with a sham injection, i.e., lack of any injection. We now 

describe the results of an identical experiment whilst using biologically and chemically 

robust controls: an intravitreous administration of the isotype control IgG prepared either in 

PBS or in the identical diluent. The anti-IL18 antibody used in the previous study6 was 

formulated in a high concentration (50%) of glycerol – a known pro-angiogenic molecule14. 

We therefore asked whether this antibody increased CNV not due to IL18 targeting, but 

rather the glycerol content of the diluent.

First, two groups (JA and DH) reproduced the finding that the anti-IL18 antibody (Abcam 

ab71495) used previously6 increased CNV in wild-type mice when compared to sham, i.e., 

no, injection. We also found that this anti-IL18 antibody increased CNV in wild-type mice 

when compared to an isotype IgG diluted in PBS (Fig. 2a). Next, we tested the hypothesis 

that glycerol in ab71495 was responsible for the observed increase in angiogenesis. We 

found that intravitreous administration of glycerol induced a dose-dependent increase in 

CNV in wild-type mice (Fig. 2b). The glycerol-containing Abcam diluent alone (Fig. 2c) 

increased CNV in wild-type mice compared to sham and PBS injection, to a similar extent 

as ab71495 or isotype IgG constituted in Abcam diluent. In contrast, no increase in CNV 

was observed for isotype IgG constituted in glycerol-free buffer. In addition, both the anti-

IL18 ab71495 and isotype IgG constituted in Abcam diluent similarly increased CNV in 

Il18−/− mice (Fig. 2d), confirming that their pro-angiogenic effect occurred independent of 

Il18 blockade.

On the other hand, consistent with the pro-angiogenic property of glycerol, neither ab71495 

in diluent nor diluent alone increased CNV in mice deficient for aquaporin-1, a membrane 

channel protein that is permeable to glycerol15 and promotes angiogenesis16 (Fig. 2e). Next, 

we dialyzed the Ab71495 antibody to remove substances less than 10,000 Da in molecular 

weight (including glycerol: 92 Da; and thimerosol: 405 Da), achieving a depletion of 

99.95% of glycerol from the antibody preparation. We found that, in contrast to non-

dialyzed Ab71495, dialyzed (glycerol-depleted) antibody did not increase CNV in wild-type 

mice (Supplementary Fig. 4a). After dialysis, the only remaining known constituent in the 

diluent would be 1% BSA; to rule out any confounding effects of BSA, we found that 1 % 

BSA did not affect CNV in wild-type mice (Supplementary Fig. 4c).

Further implicating glycerol as the pro-angiogenic component of anti-IL18 ab71495, a 

different anti-IL18 neutralizing antibody (MBL D048-3) used at a dose that contained 67 

times less glycerol than ab71495 (or Abcam diluent) per injection, did not increase CNV in 

wild-type mice. Three groups (JA, HT, DH) demonstrated that MBL D048-3 antibody 

against IL18, which prevented RPE degeneration in a mouse model of inflammasome-

induced dry AMD at the same dose5, did not change CNV size when compared to an isotype 

IgG control, or when dialyzed (Fig. 2f and Supplementary Fig. 5a,b). We also injected 1 μg 

of dialyzed MBL D048-3, and found that it too did not affect CNV (Supplementary Fig. 5b). 

These data indicate that the pro-angiogenic effect of the anti-pro-IL18 antibody earlier 

reported6 was due to glycerol and not IL18 neutralization, and that endogenous IL18 does 

not drive CNV.
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Finally, we found that mice genetically deficient for either Il18 or its cognate receptor Il18r1 

exhibited reduced CNV size compared to wild-type mice (Supplementary Fig. 5 c,d), which 

is also contrary to the earlier proposition that IL18 is anti-angiogenic in CNV6. Indeed, these 

data imply that developmental loss of IL18 function creates a microenvironment that 

responds with reduced angiogenesis in the face of injury.

In a recent study, Doyle et al.12 reported that intravitreous administration of recombinant 

IL-18 inhibited laser CNV in wild-type mice. However, their datum consisted only of a 

single dose (3 μl of 50 ng/ml = 150 pg) of a single IL18 preparation. Apart from the lack of 

any dose response study (in contrast to our 5-log dose range which encompassed 150 pg), 

their report also lacked any supporting loss-of-function studies, such as an IL18R1-deficient 

system, to support the concept that angiosuppression in their model results from a specific 

biological effect of IL-18. Moreover, the complete composition of their recombinant IL18 

preparation (a proprietary GSK formulation) was not disclosed nor were the individual 

components tested in CNV; as we have demonstrated, the chemical constituents of these 

biological preparations can profoundly modulate angiogenesis. Another potential source of 

discrepancy could be the degree of experimental variation: the CNV volumes in vehicle-

treated eyes in Doyle et al.12 varied 3-fold between experiments, thereby hindering 

unambiguous differentiation of drug effects from experimental variability.

They also assessed the effect of systemic administration of IL-18 on laser-induced CNV by 

administering it subcutaneously in different dosing regimens. Curiously, they reported that 

this route of IL-18 delivery was equally effective if administered: 1) every day beginning 

one day prior to laser injury; or 2) in a single dose 14 days prior to laser injury. The half-life 

of IL18 in the serum of mice is 16 hours17; therefore, at the time of laser injury, the 

administered IL-18 in mice receiving the second dosing regimen would have undergone 21 

half-lives. At the reported effective single dose (1 mg/kg), the amount of recombinant IL18 

remaining in the entire mouse (assuming a total body mass of 25 g) at the time of laser 

injury would be approximately 12 pg (25 μg/221). Assuming uniform distribution throughout 

the body, the amount of recombinant IL18 in the mouse choroid (~1 mg mass) – the site of 

CNV – at 14 days after a single systemic injection would be approximately 0.5 fg. 

Surprisingly, this amount of IL18 was reported to be as effective in inhibiting CNV as a 

dose containing 2.1 million times as much IL18 administered daily. More confusingly, the 

same dose administered one day prior to laser injury (but not thereafter) was reported to be 

completely ineffective in inhibiting CNV. Collectively, the data presented by Doyle et al.12 

are both perplexing and difficult to reconcile with a biological model of IL18 signaling. 

Moreover, systemic IL18 administered to mice at a dose 4–40 times lower than used by 

Doyle et al.12 has been reported to induce cardiac dysfunction18–20; the effects of such 

cardiac toxicity on CNV are unknown.

Although inflammasome-targeting drugs have not yet entered clinical trials for AMD, this 

next-generation treatment strategy is slated to be investigated in the near future. However, 

inflammasome targeting in pre-clinical investigations has not been limited to IL18 blockade, 

but extends also to more upstream, common processing events. If a broad approach to 

inhibiting inflammasome activation were pursued – for example, targeting the 

inflammasome machinery that processes IL18 (and other cytokines), instead of blocking 
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IL18 directly – it would be important to determine whether such general inflammasome 

inhibition has any effect on CNV. Therefore, we sought to more generally test whether 

NLRP3 inflammasome activation influences CNV using genetic ablation and 

pharmacological inhibition targeting the core inflammasome genes Nlrp3, Pycard, and 

Casp1.

CNV was unchanged in mice deficient in Casp1, Nlrp3, or Pycard compared to wild-type 

mice (Supplementary Fig. 6a). Similarly, intravitreous administration of cell-permeant 

cholesterol-conjugated, non-immunogenic 17+2 nt siRNAs21 targeting Nlrp3 or Pycard in 

wild-type mice did not change CNV size compared with control siRNA administration 

(Supplementary Fig. 6b and Supplementary Fig. 7). In addition, intravitreous administration 

of peptide inhibitor of caspase-1, at a dose that blocked RPE degeneration in vivo5, in wild-

type mice did not change CNV compared with a control peptide (Supplementary Fig. 6c). 

Collectively, these data indicate that NLRP3 inflammasome targeting does not affect CNV.

The development of novel anti-angiogenic strategies to treat neovascular AMD is an 

important pursuit in providing much-needed improvements to current standard-of-care 

therapy. IL18 has been reported to promote22,23 and suppress24,25 angiogenesis in various 

systems, although we found that modulating IL18 levels had no impact on CNV progression. 

Consistent with the concept that inflammasome inhibition is a safe and viable therapeutic 

option for AMD, the other major cytokine produced by NLRP3 inflammasome activation, 

IL-1β, was found to promote CNV, and its blockade reduced CNV without negatively 

impacting photoreceptor health26. It is not clear why in two of our experiments we did not 

reproduce the results from previous work6 (Supplementary Fig. 6a; Supplementary Fig. 5), 

although it is possible that differences in animals (e.g. background mouse strain or age – not 

published in detail previously6) or technique (e.g. laser CNV parameters27), account for 

these discrepancies. Differences in gene-environment interactions or microbiomes also 

might account for the observed differences28,29.

Our work cautions against intraocular administration of IL18 for the treatment of CNV, 

though it is also important to recognize that laser burn-induced neovascularization model 

utilized here and by Doyle et al. might differ significantly from CNV in human AMD. In 

this case, the translation of findings in mice to humans can be hampered by the non-

synonymity of immune responses between these species in human inflammatory diseases30.

Our work also highlights the need for guarded interpretation of experiments that are not 

rigorously controlled. Consistent with precedent literature describing the pro-angiogenic 

nature of glycerol, we showed that the anti-IL18 antibody reported to induce angiogenesis6 

did so only because it is formulated in glycerol and not because it neutralized IL18. Our 

findings support the idea that inhibition of NLRP3 or IL18, which has been proposed for 

treatment of dry AMD, Alzheimer’s disease, atherosclerosis, and diabetes, might not 

exacerbate co-incident CNV.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. IL18 administration does not affect choroidal angiogenesis
a–e. Recombinant IL18 (rIL18) (30 pg–1,000 ng) did not decrease CNV at one week after 

laser injury in wild-type mice, NS compared to PBS (Independent experiments from 

different laboratories, a: BA, n = 12; b: DH, n = 8; c: HT, n = 16; d: YO, n = 14; e: JA, n = 

17). f. Meta-analysis of datasets presented in Fig. 1a–e, with error bars denoting 95% 

confidence interval. NS, not significant. All error bars indicate mean ± s.e.m, Mann Whitney 

U test. Data from laboratories of: BA (Balamurali Ambati), DH (David Hinton), HT (Hiroko 

Terasaki), YO (Yuichiro Ogura), JA (Jayakrishna Ambati). n = number of eyes per 

condition.
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Figure 2. Glycerol, but not IL18 deficiency, increases choroidal angiogenesis
a–d. The pro-angiogenic effect of the anti-IL18 antibody ab71495 was due to glycerol in the 

diluent. a. Ab71495 (1 μg antibody which contains 8.57 μmol glycerol) increased CNV in 

wild type mice compared to isotype IgG (1 μg antibody; no glycerol). (DH, n = 8). b. 
Glycerol increased CNV in wild type mice (JA, n = 14–17). c. Ab71495 (1 μg), its diluent 

(Abcam diluent) alone, and isotype IgG (1 μg) constituted with Abcam diluent increased 

CNV in wild-type mice compared to sham injection or PBS, whereas isotype IgG (1 μg) in 

PBS diluent did not increase CNV (n = 11–21). d. Ab71495 (1 μg) or isotype IgG (1 μg) 

constituted with Abcam diluent, but not an isotype IgG in PBS, increased CNV in Il18−/− 

mice, compared to PBS injection (n = 6–12). e. Ab71495 (1 μg), its diluent (Abcam diluent) 

alone, and isotype IgG (1 μg) constituted with Abcam diluent did not increase CNV 

compared to PBS in mice deficient for aquaporin-1 (Aqp1−/−) (n = 16). f. Neither the 

neutralizing anti-IL18 antibody MBL D048-3 (30 ng which contains 0.128 μmol glycerol) 

nor an isotype IgG (30 ng) increased CNV compared to PBS in wild-type mice (n = 18–20). 

a–f, final glycerol concentration of injections shown in μmol. a–d *, P < 0.05, Mann 

Whitney U test. e,f NS, not significant. CNV volumes were measured at one week after laser 

injury. All error bars indicate mean ± s.e.m. DH, data from laboratory of David Hinton; 

unless specified, data from lab of JA (Jayakrishna Ambati). n = number of eyes per 

condition.
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